
October 2000 The Delphi Magazine 45

Beating The System:
Delphi Hails A CAB
by Dave Jewell

As you’ll have gathered from
the title, this month’s column

is all about accessing CAB files
from Delphi. Back when the world
was young, the only archive file
format of any consequence was
.ZIP, and possibly .ARC files if
you’re as long in the tooth as me!
Then Microsoft decided they
wanted an archive file format of
their own and the CAB file was
born. As you’ll appreciate, CAB
files are used extensively by
Microsoft setup programs, particu-
larly for new operating system
installations.

Maybe you want to write a utility
which scans a set of cabinet files
for a particular item peeking inside
each file as it goes? Or maybe you
want to write a replacement for the
excellent WinZip shareware pro-
gram, and you wish to add CAB
capabilities to your code? Either
way, being able to access CAB files
from a Delphi application is a
useful capability.

A Cabinet Of Curiosities
Fortunately, manipulating CAB
files isn’t massively complicated.
Microsoft document the internal
file format of CAB files, and they
even go into a lengthy explanation
of the data compression algorithm
that’s used. Even so, it’s easier to
make use of the 32-bit CABINET.DLL
file which contains all the neces-
sary routines for CAB file manipu-
lation. You can download
Microsoft’s CAB SDK from

http://msdn.microsoft.com/
workshop/management/cab/
cabdl.asp

By Microsoft standards, it’s rela-
tively small at around 500Kb.

Once you’ve installed the SDK,
you’ll see that the available API is
neatly split into two groups of
related functions. On the one hand,

there are the FCI (File Compression
Interface) routines, and on other
hand there are the FDI (File Decom-
pression Interface) calls. In this
article, we’ll be concentrating on
the latter. The official set of FDI
routines are: FDICreate, FDIDestroy,
FDIIsCabinet and FDICopy.

The DLL also contains another
routine, FDITruncateCabinet, which
is undocumented by Microsoft and
I haven’t figured out what this rou-
tine does yet.

Contrary to what you might
expect, FDICreate doesn’t actually
create a new CAB file. Instead, it
creates what Microsoft refer to as
an FDI context. All this really
means is that, behind the scenes,
the code inside CABINET.DLL allo-
cates a chunk of memory used to
store per-instance data. Here’s the
function prototype for FDICreate:

function FDICreate (pAlloc,
pFree, pOpen, pRead, pWrite,
pClose, pSeek: Pointer;
cpuType: Integer; var erf:
TERF): THandle; cdecl;

As you can see, FDICreate takes
rather a lot of parameters! The
design of the CABINET.DLL API is
heavily based around application
callback routines, and this is the
purpose of the first seven parame-
ters to FDICreate. Briefly, these
routines must provide memory
allocation and de-allocation capa-
bilities, and the ability to open,
read, write and close files, together
with the ability to seek to a specific
file position. The format of these
routines will be discussed a little
later. The next parameter to FDI-
Create, cpuType, is a hangover from
an earlier 16-bit version of the CAB
libraries: it’s ignored by the 32-bit
code. Finally, the erf parameter
points to a data structure of type
TERF which provides error code
information back to the caller.

In a similar vein, the FDIDestroy
routine is used to destroy an exist-
ing FDI context. It takes a single
parameter, the ‘handle’ (it’s actu-
ally just a pointer) to the context
which was created by FDICreate.
It’s responsible for freeing any
internal data structures and clos-
ing any internal files associated
with the FDI context:

function FDIDestroy (h:
THandle): Bool; cdecl;

The next routine, FDIIsCabinet, is
used to determine whether a spe-
cific file is a valid CAB file. If so, it
returns information relating to the
archive in a data structure of type
TFDICabinetInfo. The function pro-
totype for the routine is:

function FDIIsCabinet(
h: THandle; fd: Integer;
var info: TFDICabinetInfo):
Bool; cdecl;

The first parameter, h, is an FDI
context handle obtained from
FDICreate. The second parameter,
fd, is a file handle which is used to
identify the file we’re interested in.
Finally, info is used to return the
aforementioned file information.
One might reasonably expect that
this routine would take a filename
and internally open and close the
file, but this isn’t the case. The
caller has to take responsibility for
opening and closing the file. The
format of the TFDICabinetInfo data
structure is shown in Listing 1.

Briefly, the cbCabinet member
corresponds to the size of the
enclosing CAB file. The cFiles field
indicates how many files are pres-
ent and setID is an application-
defined number associated with
the CAB file. You might expect that
cFolders tells us how many path-
name entries are stored in the
archive, but this isn’t the case at
all. In CAB-speak, a ‘folder’ is a
decompression unit, ie a chunk of
bytes inside the CAB file which
contains one or more files, or parts
of a file. To quote directly from the
Microsoft documentation:

‘A cabinet file contains one or
more folders. A folder contains
one or more (pieces of) files. A

46 The Delphi Magazine Issue 62

folder is by definition a decompres-
sion unit, ie, to extract a file from a
folder, all of the data from the start
of the folder up through and
including the desired file must be
read and decompressed.’

Clear? Well, not terribly, no. The
only point I’m making here is that a
CAB file folder has nothing to do
with a folder in the normal sense of
the word. A better word might
have been cluster or bucket.

Like ZIP and RAR archives, CAB
files have been designed so that a
single logical archive can be
spread across multiple physical
files. This ‘disk-spanning’ feature
means you can have a single 10Mb
CAB file spread over a number of
1.44Mb floppies. To support this,
the iCabinet field specifies the
number of this CAB file in a logical
set. In the same way, the hasPrev
and hasNext fields (which are
Boolean quantities despite being
stored as 32-bit integers) indicate
whether a file contained in this
CAB is partially stored in the previ-
ous and next CAB files in the set.

The fReserve field requires a
little more explanation. As with
hasPrev and hasNext, it’s simply a
Boolean field indicating whether
the archive contains a reserved
area. CAB files can include
reserved areas within the file for
special purposes such as code-
signing (as suggested by the
Microsoft documentation) and so
forth. Reserved areas can be
stored in the CAB file on a per-
cabinet basis (ie there’s only one of
them!), on a per-folder basis (but
remember the foregoing remarks:
we’re talking decompression units,
not pathnames), or even on a per-
datablock basis. Typically, only
the per-cabinet option is likely to
be encountered.

The last FDI call, FDICopy, is the
real meat of the story. This is the
routine that actually extracts files
from the CAB file, and more
besides. The prototype for this
function is given below:

function FDICopy(
h: THandle; CabName, CabPath:
PChar; Flags: Integer;
pNotify, pEncrypt, pUser:
Pointer): Bool; cdecl;

As ever, the h parameter specifies
an FDI context. The next two
parameters, CabName and CabPath,
are used to specify the location of
the CAB file that we’re working
with. CabName specifies the actual
file while CabPath is the pathname
of the file. Now why didn’t
Microsoft do what everyone else
does and just put the pathname
and filename into a single string?

The Flags parameter is essen-
tially unused and can be set to
zero. The pNotify parameter is
used to point to an application-
supplied notification routine
which is called during the copy
operation. Finally, the pEncrypt
parameter is reserved for encryp-
tion enhancements and should be
set to nil. The pUser field takes any
arbitrary value which is passed on
to the notification routine.

The FDI Notification Routine
The really important thing here is
the notification routine. Rather
counter-intuitively, the notifica-
tion routine gets called for each file
that’s about to be extracted, giving
the application an opportunity to
perform the extraction or reject it.
Thus, the FDICopy call is essentially
the only way of enumerating the
contents of a cabinet, because the
notification routine is called for
every file inside the archive.

The function prototype for the
notification routine looks like this:

function FDINotify(
NotifyType: Integer;
var Info: TFDINotification):
Integer; cdecl;

This might be a good time to point
out the importance of those cdecl
attributes on all the callback rou-
tines used by the CAB API. As I’ve
already observed, the original
design of this API goes back to
16-bit days and the cdecl calling
convention is pretty antediluvian.

In the Windows API, almost all call-
back routines should be defined as
stdcall. These routines are a rare
exception. I should also confess
that, for readability and clarity,
I’ve been changing the names of
Microsoft’s identifiers as I’ve gone
along: if you look in the FDI.H file (in
the CAB SDK) you’ll see they define
the notification routine as taking
two parameters called fdint and
pfdin. Enough said.

The NotifyType parameter tells
us what type of notification is
being received. This can be one of
those shown in Listing 2.

Briefly, the ncCABInfo code pro-
vides general information about
the CAB archive. When this notifi-
cation is received, the various
fields in the TFDINotification data
structure (discussed below) will
contain information about the
path/name of the next cabinet file,
the number of the current cabinet
in the set, and so on. The ncPar-
tialFile notification is triggered if
the first file in a cabinet is a contin-
uation from a previous cabinet.
Similarly, the ncNextCabinet notifi-
cation is triggered whenever the
decompression process moves to
the next CAB. The ncCopyFile noti-
fication occurs when the
decompressor is asking the appli-
cation whether a certain file
should be decompressed, and
ncCloseFileInfo occurs when the
file has been decompressed and
needs to be closed; at this point,
the onus is on the application to
close the file and update the file’s
modification date/time using the
values provided in the TFDINotif-
ication data structure.

The ncEnumerate notify code has
been listed for completeness, but
the CAB SDK has no information on
how to use it, or what it does.

For each of the notification
codes in Listing 2, the contents of

TFDICabinetInfo = record
cbCabinet: Integer; // size of the archive
cFolders: Word; // number of folders
cFiles: Word; // number of files
setID: Word; // application-defined magic #
iCabinet: Word; // number of cabinet in set
fReserve: Integer; // has reserved area?
hasprev: Integer; // chained to previous?
hasnext: Integer; // chained to next?

end;

➤ Listing 1

48 The Delphi Magazine Issue 62

the Info data structure are filled
out with information whose mean-
ing depends on the exact notify
code that we’re dealing with.

At this point, things are starting
to sound messy, aren’t they? Fortu-
nately, we can substantially sim-
plify things if we make the design
decision that we’re not going to
handle disk-spanned CAB files, not
unreasonable given the size of
today’s storage devices.

The fact is, only two of the afore-
mentioned notification codes are
especially useful: ncCopyFile and
ncFileClose. With these, we can
enumerate the contents of a CAB
and perform decompression.
Another benefit of simplifying
things in this way is that most of
the fields in the TFDINotification
record have the same meaning for
both notification codes. The (sim-
plified) record definition for
TFDINotification is in Listing 3.

The first field, FileSize, gives us
the uncompressed size of the cur-
rent file. There is not, as far as I can
tell, any way of determining the
compressed size of a file using the
existing API. You should note care-
fully that FileSize is only valid if
the notification code is ncCopyFile.
For ncFileClose, this is used as a
flag which indicates whether or not
the application should attempt to
execute the freshly decompressed
file. This is presumably for use by
installer applications; we effec-
tively ignore this ‘auto-run’ flag.

The next field, FileName, obvi-
ously gives us the name of the file.
The next two fields, psz2 and psz3,
are unused by both of the notifica-
tion codes we’re interested in. Next
comes AppValue, which corre-
sponds to the pUser argument to
FDICopy. We can use this value to

recover the instance value of a
Delphi component from within our
notification handler. The fd field is
only relevant for ncFileClose: it’s
the handle to the freshly decom-
pressed file which should be
closed by the application.

Date, Time and Attribs all corre-
spond to the usual MSDOS 16-bit
file system properties, while the
next three fields relate to which
cabinet/folder we’re currently
decompressing. Finally, FDIError
returns an error code, if any.

The CABAPI Unit
Let’s start to bring this together.
Rather than writing a component
that directly talks to the CAB API
(as exported by CABINET.DLL), I
decided to introduce an intermedi-
ate unit called CABAPI.PAS, the
interface for which is shown in List-
ing 4 (the full source is on the disk:
it’s just too long to print).

The CABAPI unit wraps the some-
what idiosyncratic FDI routines
with a number of easy-to-call rou-
tines which are far more conve-
nient to use than the Microsoft
equivalents. I did things this way
because, after all, Microsoft do
provide the byte format of CAB
files, and I reasoned that some
enterprising individual might want
to eliminate the need for
CABINET.DLL altogether, simply
using Delphi stream I/O to access
the CAB file directly and
re-implementing the compression/
decompression algorithms in
Delphi. If you do alter CABAPI.PAS in
this way, presenting the same
interface to the outside world, then

any higher level code will be
unaffected.

As you can see from Listing 4,
CABAPI exports just a few simple
routines, all of which are prefixed
by the letters CAB. The first routine,
CABIsFile, is used to determine
whether or not a specific file is a
valid CAB archive, returning True
or False as appropriate. Similarly,
CABIsMultiPart can be used to
determine if a specific CAB archive
is a multi-part (disk spanning, if
you prefer) file. As I said, I don’t
support disk spanning archives in
this code, but it’s useful to be able
to recognise them.

CABGetFileCount does exactly
what it says on the tin, returning a
count of the number of files con-
tained within a specified CAB file
while the CABGetFileList routine
can be used to populate a TString-
List object with a list of the files in
the CAB. I could have used addi-
tional interface routines to deter-
mine the size of each file and its
corresponding modification date/
time, but I used one of my favourite
techniques (it’s easy and effi-
cient), encoding all the pertinent
information into a single string. So,
a typical entry in the returned
string list might look like this:

1394bus.sys|45568|688592763

This tells us that the archive con-
tains a file, 1394bus.sys, which has
an uncompressed size of 45568
bytes and a DOS timestamp of
688592763. This timestamp can be
converted into the infinitely more
useful TFileTime format by using
the FileDateToDateTime routine.

Finally, the CABExtractFile rou-
tine is used to extract a single des-
ignated file from a CAB archive,
whereas the CABExtractMultiple-
Files extracts all the files which
are named in the string list passed
to the routine. You will notice that
none of the interface routines ‘ex-

ncCABInfo = 0; // General information about cabinet
ncPartialFile = 1; // First file in cabinet is continuation
ncCopyFile = 2; // File to be copied
ncCloseFileInfo = 3; // close the file, set relevant info
ncNextCabinet = 4; // File continued to next cabinet
ncEnumerate = 5; // Enumeration status

TFDINotification = record
FileSize: Integer; // uncomp size of the file (ncCopyFile only)
FileName: PChar; // name of a file in the CAB
psz2: PChar;
psz3: PChar;
AppValue: Pointer; // application supplied value
fd: Integer; // file handle
Date: Word; // file's 16-bit FAT date
Time: Word; // file's 16-bit FAT time
Attribs: Word; // file's 16-bit FAT attributes
setID: Word; // application-defined magic #
iCabinet: Word; // number of this CAB
iFolder: Word; // number of current 'folder'
FDIError: Integer; // error code, if any

end;

➤ Listing 3

➤ Listing 2

October 2000 The Delphi Magazine 49

ported’ from CABAPI contain any
hint of implementation details
specific to the FDI API. That’s just
as it should be.

The implementation part of the
unit (check the file on the disk)
begins with assorted declarations,
including the aforementioned
TFDICabinetInfo and TFDINotif-
ication data structures which
we’ve already discussed. This is
followed by a number of private
variables, including function point-
ers for each of the FDIxxxx routines
defined in the CABINET.DLL library.
These function pointers are auto-
matically initialised in the initial-
ization part of the unit by using
GetProcAddress on the cabinet
library. If you’re feeling especially
paranoid, you might like to check if
any of these function pointers are
Nilbefore using them, but I haven’t
bothered; one gets the impression
that Microsoft doesn’t update this
particular DLL very often...

As I mentioned earlier, the FDI
routines work by using numerous
application callbacks, some of
which are responsible for imple-
menting memory management and
file I/O. In their documentation,
Microsoft boast that this means
CABINET.DLL doesn’t make use of
any C runtime calls at all, implying
that it’s a deeply cool feature. Au
contraire, it strikes me as a pain in
the neck, since it increases the
amount of support code needed in
the application. Thus, Listing 4
continues with MyAlloc, MyFree,
MyOpen, MyClose, MyRead, MyWrite and
MySeek! As noted previously, these
must be cdecl routines. If not, it’ll
be tears before bedtime.

Next comes NewFDIContext, a
little helper routine whose job is to
ensure that we only ever have to

make the ghastly FDICreate call
once! The fun stuff starts with
CABIsFile which demonstrates
how to create an FDI context using
NewFDIContext. The code first cre-
ates the context, then uses MyOpen
(and, thus, the ancient _lopen rou-
tine!) to create a read-only file
handle to the archive, and then
calls FDIIsCabinet to do the actual
work of recognising the file type.
The handle is then closed, the FDI
context destroyed, and the result
is returned to the caller.

As an aside, you’ll notice that
CABIsFile is extensively used in the
other CABAPI files, and you might
suspect that this makes things
slow and inefficient. In fact, that’s
not the case. Internally, FDIIsCab-
inet and FDICreate do very little
work and calling them once or
twice more than strictly necessary
is neither here nor there. In my
tests, I’ve been using a 51Mb CAB
file: retrieving a list of the files con-
tained inside this archive is almost
instantaneous.

Moving on, the CABIsMultiPart
routine relies on the fact that
CABIsFile initialises the contents of
the Info record, checking to see if
the internal cabinet number is
greater than zero, or if the file has a
forward or backward link to
another cabinet. Yes, I know Info
looks suspiciously like a global
variable, but give me a break!J It’s
only visible within the implementa-
tion part of the unit and without it
the code would be somewhat more
convoluted.

Again, CABGetFileCount makes
use of the Info data structure,
retrieving the file count from the
cFiles field. As I mentioned earlier,
the cFolders count has got abso-
lutely nothing to do with folders or
sub-directories in the normal
sense, and therefore I have not

bothered to implement a CABGet-
FolderCount routine, but if you
wanted to do this, it’d be dead
easy.

Things get a bit more complex
when it comes to determining the
contents of the CAB file. The
CABGetFileList routine gets
passed a TStringListobject, which
is first cleared of any existing con-
tents. Next, CABIsFile is called to
validate the archive and a new FDI
context is created. Finally, the
FDICopy routine is called, using the
ExtractFileName and ExtractFile-
Path routines to carve up the
pathname into its directory and
filename components. Notice that
the GetFileListCallback routine is
used as the notification proce-
dure, and we pass the TStringList
object as the final parameter to
FDICopy.

Inside the notification routine,
this means that we can retrieve the
string list object by referencing the
AppValue field of the TFDINot-
ification data structure. If the
notification type is ncCopyFile (the
DLL is requesting whether the cur-
rent file should be decompressed)
then we retrieve the name of the
file and concatenate the uncom-
pressed file size and DOS date/
time as two ASCII strings using ‘|’
as a separator character. The
resulting string is then added to
the string list object. Notice that in
all cases we return zero as the
function result. This tells
CABINET.DLL that we don’t actually
want to decompress this file.

The structure of the CABExtr-
actFile routine is very similar. As
before, the archive is validated
and an FDI context created. We
save the destination path string
into a variable where it can be
accessed from the notification rou-
tine which, this time round, is
called FileExtractSingleCallback.
You’ll also notice that we pass the
name of the file to be extracted as
the last parameter to FDICopy.
Inside the notification routine, we
retrieve this from Info.AppValue.

If we’ve got a notification type of
ncCopyFile, then the code checks
to see if the current filename
matches the target filename. If so,
then the routine builds a full

unit CABAPI;
interface
uses
Classes;

function CABIsFile(const CABFileName: String): Boolean;
function CABIsMultiPart(const CABFileName: String): Boolean;
function CABGetFileCount(const CABFileName: String): Integer;
procedure CABGetFileList(const CABFileName: String; List: TStringList);
procedure CABExtractFile(const CABFileName, DestPath, FileName: String);
procedure CABExtractMultipleFiles(const CABFileName, DestPath: String;

List: TStringList);
implementation
{... see disk for full source code...}

➤ Listing 4

50 The Delphi Magazine Issue 62

pathname for the file to be decom-
pressed, and this is passed to the
_lcreat routine. This file handle is
returned as the function result. In a
nutshell, CABINET.DLL looks at the
notification procedure function
result and (as we’ve seen) if zero is
returned, then it’s interpreted as
‘skip file’. If it’s less than zero it’s
interpreted as an error. Anything
else is taken to be a file handle to
use for decompressing the file.

However, if we get a ncCloseFile-
Info notification the code is
requesting the application close
the file and set its timestamp. Here
we’re only extracting one file so
only one ncCloseFileInfo notifica-
tion should ever be received. So, it
shouldn’t be necessary to check
for a filename match, but I’ve
included one for good measure.
The DosDateTimeToFileTime routine
is used to convert the date/time to
a format compatible with SetFile-
Time, and the file time is updated.
Finally, the file is closed. Notice
that, regardless of whether or not
we got a file match, we always
return a value of one in response to
an ncCloseFileInfo code. This is
interpreted as ‘success’ by the
library code. Anything else aborts
the entire FDICopy operation.

Lastly, there’s the CABExtract-
MultipleFiles routine and its
sidekick, the FileExtractMultiple-
Callback notification routine. This

time, we pass a string list instance
to the notification routine and, for
each received notification, we use
the IndexOf method to verify that
the current file exists in the list of
files to be extracted. If it doesn’t,
the file is skipped. Here again, the
filename check in the ncCloseFile-
Info case is probably redundant,
as we’ll probably only get this noti-
fication for files that we’ve decom-
pressed, but the odd sanity check
here and there does no harm at all.

Conclusions
As ever, the proof of the pudding is
in the eating. Included on the disk
(in the file CabFile.pas) is a mini-
malist Delphi class, TCabinet, that
can be used to browse the contents
of a CAB file. I haven’t included
data decompression capabilities
since you may well have your own
idea about how you want this to
work. Using the CABExtractFile and
CABExtractMultipleFiles methods
of the TCabinet class, you can easily
implement method calls to extract
a single file, a specific set of files, or
everything in the archive. Listing 5
is a snippet from my CAB demo
(also on the disk) showing how
easy it is to fill a TListView control
with the contents of a CAB archive.
This is shown working in Figure 1.

One thing you should be aware
of is the fact that stored filenames
(within a CAB file) can contain
pathnames ahead of the filename
itself. This is why the decompres-

sion code in CABAPI is
written the way it is. You
might pass a destination
pathname of c:\wombat,
but if the filename entry
in the CAB file is com\
ms\util\Atom.class, this
pathname will obviously
be appended to the
c:\wombat directory. If
you want all-singin’,

all-dancin’ functionality, you could
always pass an additional boolean
variable to CABExtractFile and
CABExtractMultipleFiles which
would tell them whether or not to
honour embedded pathname
information within the archive.

I haven’t included any code for
creating CAB files (the FCI rou-
tines) because I suspect that you
will be much more interested in
programmatically extracting infor-
mation from CAB files than in cre-
ating them yourself. However, if
you have a requirement to do this,
all the information is in the
Microsoft CAB SDK (see the earlier
download URL) and it’s no more
difficult to implement than decom-
pression.

Have fun!

Dave Jewell is a freelance consul-
tant/programmer and technical
journalist specialising in system-
level work. He is Technical Editor
of Developers Review which is
also published by iTec. Email Dave
at TechEditor@itecuk.com

procedure TForm1.Button1Click(
Sender: TObject);

var
Idx: Integer;
Item: TListItem;

begin
if OpenDialog.Execute then begin
FileList.Items.Clear;
cab.CABFileName :=
OpenDialog.FileName;

FileCount.Caption :=
'Files in CAB = ' +
IntToStr(cab.FileCount);

FileList.Items.BeginUpdate;
try
for Idx := 0 to
cab.FileCount-1 do begin
Item := FileList.Items.Add;
Item.Caption := cab[Idx];
Item.SubItems.Add(
cab.FileSize[Idx]);

Item.SubItems.Add(
cab.FileDate[Idx]);

end;
finally
FileList.Items.EndUpdate;

end;
end;

end;

➤ Listing 5

➤ Figure 1: My CAB browser.

	A Cabinet Of Curiosities
	The FDI Notification Routine
	The CABAPI Unit
	Conclusions

